
Timing Attacks on RSA

Mark van Cuijk

March 20, 2009

Abstract

In general, timing attacks are used to analyze differences in execution time that result from
differences in input parameters of a cryptographic algorithm. These timing differences are often
caused by optimizing algorithm implementations, but they may leak information about the input
parameters. Using a timing attack, an adversary hopes to find secret information, like bits from a
secret RSA exponent. This paper summarizes several algorithms used in RSA implementations and
how timing attacks can be used to reconstruct the entire secret RSA exponent.

1 Introduction

In implementations of cryptographic algorithms,
the author must always make a trade-off between
performance and security. First presented in 1995
by Kocher, the runtime performance of a cryptosys-
tem implementation may depend on the input pa-
rameters. He describes how the runtime of a cer-
tain implementations of computing r ≡ be (mod n)
is related to the exponent e. By measuring the run-
time of several computations, he is able to deduce
the value e. In a setting where this value repre-
sents the secret exponent of a Diffie-Hellman key
exchange or the secret value in an RSA implemen-
tation, the information leaked by the timing attack
may compromise the security of the entire cryp-
tosystem.

The method described by Kocher is not appli-
cable to RSA implementations that optimize the
private key operation using the Chinese Remainder
Theorem (see section 2.2). In 2000, Schindler intro-
duced a timing attack to factor the RSA modulus
N into it’s prime factor p and q when the target
implementation uses the Chinese Remainder Theo-
rem, while the multiplications and squarings mod-
ulo the prime factors p and q are carried out with
Montgomery’s algorithm (see section 2.3).

In 2003, Brumley and Boneh published a
method for reconstructing the secret RSA expo-
nent from a webserver using an active timing at-
tack. The method uses some known facts about
the implementation of the RSA private key opera-
tion in OpenSSL.

After this introduction to the subject, this pa-
per describes several algorithms that are used to
implement modular exponentiation used for the
RSA private key operation in chapter 2. In chapter

3 some timing characteristics of these algorithms
are explained, combined with methods to recover
information from this timing information. Some
countermeasures to prevent an attacker to recover
this information are briefly discussed in chapter 4.
The paper then finishes with a conclusion.

2 Exponentiation in RSA

For a given ciphertext C, a receiver can compute
the corresponding plaintext M by computing Cd

(mod N), where d is the secret RSA exponent and
N is the modulus that is public. Although the mod-
ulus N is public, it’s factorization into prime factors
p and q is secret.

This chapter introduces several algorithms that
can be used to implement the exponentiation of the
RSA private key operation.

2.1 Binary algorithm

Given an a base b and an exponent e, the right-to-
left binary algorithm is among the simplest algo-
rithms to compute r, such that r ≡ be (mod N):
1: r ← 1
2: y ← b
3: for i = 0 to NumberOfBits(e)− 1 do
4: if Biti(e) = 1 then
5: r ← (ry) mod N
6: end if
7: y ← y2 mod N
8: end for
9: return r

This algorithm computes the result in such a
way that the exponent is in the lead. Notice how

a10 = (a2)5 = (a2)4a2 = ((a2)2)2a2 (1)

1



demonstrates how the right-to-left binary algorithm
computes r = a10.

2.2 Chinese Remainder Theorem

A very easy and effective optimization to perform
when implementing the exponentiation for RSA is
the use of the Chinese Remainder Theorem (CRT)
[6]. This optimization can only be performed when
implementing the private key operation, since it re-
quires knowing the factorization of the modulus N
into it’s prime factors p and q. The CRT allows the
the computation of r ≡ be (mod pq) to be broken
up into computing rp ≡ bep (mod p) and rq ≡ beq

(mod q), such that e ≡ ep (mod p− 1) and e ≡ eq

(mod q − 1). The values rp and rq can then be
combined into r. Since the runtime complexity of
exponentiation algorithms are related to the size
of the exponent, computing the values rp and rq
can be done much more efficiently than computing
r ≡ be (mod pq) directly.

2.3 Montgomery reduction

When computing r ≡ be (mod N), the author of
an implementation originally had two options:

1. first compute r′ = be and then reduce r′ to r,
such that r ≡ r′ (mod N); or

2. reduce each intermediate result ri modulo N,
such that it is congruent to ri.

When choosing the first option, the intermedi-
ate results will get very large and take a lot of com-
puter memory during execution of the algorithm.
Besides the large memory consumption, perform-
ing computations on very large numbers takes a lot
of time and therefore these implementations tend to
be too slow to be practical. However, when choos-
ing the second option, the intermediate result ri is
reduced modulo N on each step. Modular reduction
has the same complexity as a division, which is a
rather expensive operation compared to addition,
bitwise operations and register shifts.

In [3], Montgomery describes an algorithm that
can be used to replace the modular reductions, used
in the second option, by a more efficient method.
The algorithm introduces some one-time overhead
by first converting b into a Montgomery representa-
tion b′ and converting the result r′ back from Mont-
gomery representation to r, but reduces the time
needed for every step of the loop in the algorithm.

For working with numbers modulo N in Mont-
gomery representation, a value R must be picked,
such that R > N and gcd(N,R) = 1. For cor-
rect results, any value of R that meets these two

requirements can be used. However, to use the
Montgomery representation to optimize the expo-
nentiation, the value of R can best be set to a power
of two. In practice, implementations use the power
of two that is one bit larger than N or whose size
is rounded up to the next word boundary on the
target archicture.

The following values can be computed during
initialization, as they are going to be used multiple
times:

• R−1 (mod N) is used during modular multi-
plication and converting output values;

• N ′ ≡ N−1 (mod R) is used to make the re-
duction step more efficient; and

• (optionally) R (mod N) is used to convert
the input values.

A number a, 0 ≤ a < N , can be converted into
Montgomery representation by computing a′ ≡ aR
(mod N), which requires a modular reduction to
be performed. Converting the number a′ back can
be done by computing a ≡ aR−1 (mod N). It is
trivial to see that this results in the original value
of a, as long as the requirement gcd(N,R) = 1 is
met.

For numbers in Montgomery representation, op-
erations like addition, subtraction, negation and
(in)equality testing are unchanged. To demonstrate
this for additions: c′ ≡ a′ + b′ ≡ aR + bR ≡
(a+ b)R ≡ cR (mod N). A similar demonstration
is possible for the other operations.

To compute c ≡ ab (mod N) having a′ ≡ aR
(mod N) and b′ ≡ bR (mod N) in Montgomery
representation, the value c′ must be computed, such
that c′ ≡ cR ≡ abR ≡ aRbRR−1 ≡ a′b′R−1

(mod N). The algorithm REDC [3] computes such
a value, ensuring that also c′ < N holds after it
terminates:
1: m← (c′ mod R)N ′ mod R
2: t′ ← (c′ +mN)/R
3: if t′ ≥ N then
4: return t′ −N
5: else
6: return t′

7: end if
The correctness of the REDC algorithm is

demonstrated in [3].

2.4 Karatsuba multiplication

The numbers that are being used in cryptographic
systems are generally much larger than the word
size of the processor that performs the computa-
tions. To be able to perform the computations,
multi-precision algebraic operations must be used.

2



For additions this is pretty straight-forward, start-
ing with the least significant word, the implemen-
tation can perform an addition on each word indi-
vidually, while keeping track of a carry that might
be added to the next word.

For multiplications this isn’t possible. A
naive multi-precision multiplication algorithm
takes O(n2), but in 1962 Karatsuba discovered an
algorithm to compute this value in O(nlog 3) [5].
The algorithm computes P = N0N1 by writing
N0 = a0+a1w and N1 = b0+b1w, such that a0 < w
and b0 < w, for some w. The product can now be
written as

N0N1 = a0b0 + (a0b1 + a1b0)w + a1b1w
2. (2)

Notice how computing equation 2 directly re-
quires four multiplications. However, the term
a0b1 + a1b0 equals (a0 + a1)(b0 + b1)− a0b0 − a1b1.
Since a0b0 and a1b1 already need to be computed,
replacing the coefficient for w in equation 2 removes
two multi-precision multiplications and introduces
only one new multiplication to compute, together
with some cheaper additions.

What happens when using Karatsuba multipli-
cation is that a single multi-precision multiplica-
tion operation involving large integers is replaced
by three multi-precision multiplication operations
involving integers of approximately half the size.

3 Timing characteristics

3.1 Binary algorithms

The running time of the algorithm introduced in
section 2.1 depends on the number of bits in the ex-
ponent e that have the value 1, as line 5 in the algo-
rithm is executed conditionally. Intuitively, one can
suggest that timing information may leak the Ham-
ming weight of the exponent, but Kocher shows in
[2] that timing measurements can be analyzed to
completely recover the exponent e.

In the paper, Kocher uses the right-to-left bi-
nary algorithm and determines the exponent e bit
by bit. For each bit ei, he assumes that the attack
already has knowledge of all the bits e0...ei−1. To
determine the entire key, start with bit e0 — thus
having no known bits — and repeat the procedure
up to the last bit. The attacker performs a timing
measurement for k computations of bei (mod N),
such that the value N and each of the values bi,
0 ≤ i < k, are known for the attacker.

For each measurement, the attacker determines

• t, the total time used for the exponentiation;

• c, the time the implementation used for pro-
cessing the known bits e0...ei−1; and

• d, the time it takes to compute line 5 in the
algorithm.

The total time t can be measured by supply-
ing the input value b to the algorithm implemen-
tation and measuring the time it takes before the
output value r is returned. The values c and d
must be determined by the attacker in another way,
which would probably require knowledge of the in-
ner workings of the implementation or performing
some other experiments to retrieve timing informa-
tion. The value c depends on the number of known
bits e0...ei−1 that have the value 1. The value d
is a fixed time and is exactly the timing difference
between processing a 0 bit and a 1 bit.

When these values are determined, the attacker
can compute the time it takes to process the un-
known exponent bits ei...eNumberOfBits(e)−1, which
equals t− c minus the time to process bit i, which
equals d when ei equals 1, or 0 otherwise.

By modeling these timings as random variables
having a normal distribution, the attacker can —
after determining the mean value µ(X) and the
standard deviation σ(X) based on information on
the inner workings of the implementation or statis-
tical analysis of timing measurements — compute
the probabilities

P (b, t, c, d|ei = 1) ≈ ϕ(
(t− c− d)− µ(t− c− d)

σ(t− c− d)
)

(3)
and

P (b, t, c, d|ei = 0) ≈ ϕ(
(t− c)− µ(t− c)

σ(t− c)
), (4)

where ϕ(x) is the density function of the standard
normal distribution:

ϕ(x) =
e−

1
2 x2

√
2π

. (5)

Using Bayes’ theorem, equations 3 and 4 can be
combined, such that the attacker can determine the
probability that ei is 1, given a known base value b
and timing values t, c and d:

P (ei = 1|b, t, c, d) =
P (b, t, c, d|ei = 1)∑

v∈{0,1} P (b, t, c, d|ei = v)
.

(6)
After performing k measurements, the attacker

can combine the results to determine the proba-
bility that bit ei has value 1 using equation 7.
By repeatedly obtaining exponent bits e0 up to
eNumberOfBits(e)−1, the attacker is able to recon-
struct the entire secret RSA exponent.

3



P (ei = 1) ≈
∏k−1

i=0 P (ei = 1|yi, ti, ci, di)∑
v∈{0,1}

∏k−1
i=0 P (ei = v|yi, ti, ci, di)

(7)

3.2 Montgomery reduction

The running time of the REDC algorithm intro-
duced in section 2.3 depends on the input value c′,
such that when it causes the expression t′ ≥ N to
be true, an extra reduction (line 4) is computed.
Equation 7 in [4] states that the probability pri(u)
that the extra reduction has to be performed for a
modular multiplication of u ∈ Zn with a random
variable B, uniformly distributed on Zp, is

pri(u) =
u mod p

2R
. (8)

Therefore the expected number of extra reduc-
tions to be performed when directly computing the
exponentiation r ≡ be (mod N) is linear to the
value of b, modulo N. When the Chinese Remainder
Theorem (see section 2.2) is used to split the com-
putation into rp ≡ be (mod p) and rq ≡ be (mod q)
— with p and q being the two prime factors of N
— hundreds of Montgomery multiplications will be
carried out with factors u (mod p) and u (mod q).
While the expected number of extra reductions in-
crease when the value of b increases, there will be
a sudden drop when the value of b jumps over any
multiple of p or q.

In [4], Schindler explains that exactly this tim-
ing behaviour leaks an important piece of informa-
tion: the exact value of a prime factor p of N . The
attack that he describes falls in three phases. The
first phase finds an ”interval set” {u1 + 1, ..., u2},
with 0 < u1 < u2 < N , that contains an integer
multiple of either p or q. When such an interval is
found, the second phase narrows down the interval
so that it still contains the integer multiple of the
prime factor, but gets small enough for the third
phase to calculate gcd(u,N) for all values of u in
the interval. For most values of u, the greatest com-
mon divider with N will be 1, but one particular
value of u will reveal a prime factor of N .

As soon as one prime factor is found, the other
can be calculated by dividing N by the just found
factor, so both the values p and q are revealed. All
that is left at this point, is computing the RSA
secret exponent d — which is the the modular mul-
tiplicative inverse of the public exponent e — using
the extended version of Euler’s algorithm.

3.3 Multiplication in OpenSSL

As described by Brumley and Boneh in [1],
OpenSSL implements two multi-precision multipli-
cation algorithms, the normal version of O(n2) and
Karatsuba multiplication (see section 2.4) with a
complexity of O(nlog 3). When two numbers m and
n with the same number of words are multiplied,
the Karatsuba algorithm is used. The normal mul-
tiplication algorithm is used otherwise.

Since Karatsuba multiplication is typically
faster than normal multiplication, time measure-
ments can reveal which multiplication algorithm
was used and therefore whether the two numbers
are of the same word length. Interestingly, when
computing r ≡ be (mod p), this means that the
Karatsuba multiplication is used much more often
when the base b is just below p. When it is just
above p, then b (mod p) is small and the slower
algorithm is used much more.

Brumley and Boneh use this fact in [1] to re-
veal one of the prime factors of the RSA modulus
of a secure webserver connected through a network.
They rely on the fact that OpenSSL uses the CRT
(see section 2.2) to implement the RSA private key
operation. The attack recovers one of the prime
factors, say p, one bit at a time.

When the i most significant bits of p are known,
p0...pi−1, define g as the number that has bits
g0...gi−1 equals the known bits of p and all lower
significant bits set to zero. Now, define g′ as the
number that is equal to g, except that g′i = 1. No-
tice how g < g′ < p when bit pi is 1 and g < p < g′

when bit pi is 0. The result is that when bit pi is
1, OpenSSL will mostly use the same multiplication
routines in computing ge (mod p) and g′e (mod p),
but when bit pi is 0, there will be a significant tim-
ing difference in computing these two values.

4 Countermeasures

Timing attacks are an attack on the implementa-
tion of a certain algorithm, not on the algorithm it-
self. To prevent timing characteristics to leak infor-
mation about the secret components — like the se-
cret RSA exponent or the factorization of the mod-
ulus N into prime factors p and q — modifications
must be made to the implementation. In the case
of RSA, there are two common methods to prevent
secret information to be recovered using timing at-
tacks: making sure that the implementation always
takes the same amount of time or implement RSA
blinding to decouple the runtime of a single private
key operation from the input parameters.

4



4.1 Equal timing

An intuitive way to prevent differences of the run-
ning time of a private key operation to leak in-
formation about the secret values involved in the
computation is to make sure that every private key
operation takes the same amount of time.

As an example, the binary right-to-left algo-
rithm to compute r ≡ be (mod N), introduced in
section 2.1 can be changed to the following algo-
rithm:
1: r ← 1
2: y ← b
3: for i = 0 to NumberOfBits(e)− 1 do
4: r′ ← (ry) mod N
5: if Biti(e) = 1 then
6: r ← r′

7: else
8: r ← r
9: end if

10: y ← y2 mod N
11: end for
12: return r

Notice how the value (ry) mod N is computed
for every bit (line 4), regardless of the value, so that
it always takes the same amount of time to compute
the value r.

However, since the time to compute a modu-
lar reduction (like those performed on lines 4 and
10) depends on the value of N, this example is still
faulty and it immediately demonstrates an impor-
tant disadvantage of equal timing: it is very difficult
to implement correctly. But also if programmed
carefully, modern compilers tend to optimize the
generate code; a modern compiler would optimize
this version in such a way, that it will actually re-
duce to the original version from section 2.1.

Another disadvantage is that running this ver-
sion of the algorithm not only takes the same
amount of time — regardless of the input values
— it always takes the maximum amount of time.

4.2 RSA blinding

Another method to prevent timing differences to
leak secret information is to decouple the runtime
of an algorithm from the input values. Actually,
in chapter 6 of [1] this method is presented as the
preferred method. Before computing the exponen-
tiation in the RSA private key operation, a transfor-
mation can be perform on the ciphertext, such that
the actually computed value depends on a random
variable and therefore the runtime of the algorithm
has no relation to the ciphertext anymore.

Let r be a random value, such that 0 < r < N .
Notice how (reC)dr−1 ≡ red−1Cd (mod N). Since
N = pq, red−1 ≡ 1 (mod N) by Eulers’ theorem

[7]. Comparing this equation to the original RSA
secret key operation, the same value is computed,
but a random value that decouples the runtime of
the algorithm from the input values is introduced.

5 Conclusion

The RSA private key operation consist of com-
puting a single modular exponentiation operation.
Several algorithms for implementing this operation
are available, yet the runtime of these algorithms
often depends on the input values. When an at-
tacker is able to supply the input value and measure
the time it takes for the target implementation to
perform the secret key operation, the attacker can
reveal the secret RSA exponent or the factorization
of N into prime factors p and q.

Several methods are available to prevent secret
information to leak through timing differences. The
preferred method is using RSA blinding, which is
actually successfully implemented in cryptographic
libraries like OpenSSL.

References

[1] David Brumley and Dan Boneh. Remote timing
attacks are practical. In In Proceedings of the
12th USENIX Security Symposium, pages 1–14,
2003.

[2] Paul C. Kocher. Cryptanalysis of diffie-hellman,
rsa, dss, and other cryptosystems using timing
attacks. In Advances in cryptology, CRYPTO
95: 15th Annual International Cryptology Con-
ference, pages 171–183. Springer-Verlag, 1995.

[3] Peter L. Montgomery. Modular multiplication
without trial division. Mathematics of Compu-
tation, 44(170):519–521, 1985.

[4] Werner Schindler. A timing attack against rsa
with the chinese remainder theorem. In Pro-
ceedings of the Second International Workshop
on Cryptographic Hardware and Embedded Sys-
tems, pages 109–124. Springer-Verlag, 2000.

[5] Eric Weisstein. Karatsuba multiplica-
tion. MathWorld – A Wolfram Web Re-
source. http://mathworld.wolfram.com/
KaratsubaMultiplication.html.

[6] Wikipedia. Chinese remainder theorem.
http://en.wikipedia.org/wiki/Chinese_
Remainder_Theorem.

[7] Wikipedia. Eulers’ theorem. http://en.
wikipedia.org/wiki/Euler’s_theorem.

5


